February 2024 归档

层层提需求,为何准确度低

| 暂无评论

在需求预测上,层层报批是种很常见的做法。

从汉王科技说产品的复杂度

| 暂无评论

汉王科技成立于1998年,2010年在深交所中小板块上市。二十多年来,中关村那么多的科技公司中,汉王是硕果仅存的几个,离不开其在模式识别领域的技术优势。但是,在产品管理上,汉王的产品线长,产品型号众多,复杂度高,制约了它的进一步发展。

不要在存量预测上麻烦销售

| 暂无评论

需求可以分解成两部分:存量和增量。简单地说,存量就是经常性的业务。比如你开了个小饭馆,每天中午大概有50人来吃饭,这就是存量。存量一般是有规律可循的,能够通过数据分析获取。增量是变化的部分,比如附近的公司办活动,要多订30份盒饭。增量是在存量基础上的变化,因为发生了显著改变需求的事情。"从数据开始"指的是存量,"由判断结束"指的是增量,两者叠加,构成整体预测。

供应商管不好,重资产成为替代方案

| 暂无评论

我们知道,企业获取资源的方式有两种:要么自己做,垂直整合,重资产;要么供应商做,市场方式,轻资产。两者的关系是,企业选不好、管不好供应商,没法有效通过市场方式获取资源,就转向垂直整合,以重资产方式的获取资源。

供应链的推拉结合

| 暂无评论

线上线下多渠道:如何获取销售判断

| 暂无评论

案例企业的需求相当复杂,主要分三大块:大客户,渠道客户,零星散户。大客户和渠道走的是传统的线下业务,是典型的B2B;零星散户走的是线上电商业务,通过App下订单,虽然是小商户,却跟典型的B2C业务很像。线上、线下业务并存,大客户、渠道和散户对需求的影响方式也各不相同:大客户的需求变动主要是客户驱动,比如客户自己的促销、活动等;渠道和零星散户则主要由案例企业自己驱动,比如渠道政策、线上活动等。

预测判断力是可以培养的

| 暂无评论

你不需要是个计划专家,才能做预测。预测的能力不是天生的,人人都可以练就。

三管齐下,系统改善供应链绩效

| 暂无评论

如何把供应链的成本做下来,交付和资产周转做上去?我们首先想到的就是跟供应商谈判降价,提升工厂生产效率,到低成本地区寻源等。这些都重要,但成效有限,因为很少触及结构性的问题,以及其后的本质原因。

【案例】戴尔的直销模式怎么啦

| 暂无评论

合适的产品配合适的供应链

| 暂无评论

1997年,沃顿商学院教授马歇尔·费雪在《哈佛商学评论》上发表《你的产品该用什么样的供应链》一文,阐述了供应链战略必须匹配产品战略。费雪的二分法具有历史意义:对于走创新路线的产品,应该采取快速响应的供应链,其核心是供应链的灵活性,也意味着高成本;对于走低成本路线的产品,应该采取高效的供应链,其核心是供应链的低成本。产品战略的成功,取决于有合适的供应链战略来匹配

从数据里学什么:以发货记录为例

| 暂无评论

一谈起数据分析,人们经常抱怨的是没数据。就如一位职业经理人说的,公司多年来快速发展,到千亿规模了,还是靠"肩扛手拉",从Excel到Excel,没有系统的历史数据积淀,也没有数据模型,怎么办?

我们在前文谈到,多年高速成长后,企业普遍陷入"高增长、高成本"的"增长陷阱":生意越做越多,钱越赚越少;账面上赚了,都赚进库存和产能里了。那么该如何跳出"增长陷阱",重建竞争优势呢?我们得从企业运营的三大核心职能上找答案。

在库存计划领域,除了安全库存,经常打交道的还有再订货点(或者就叫订货点)。其逻辑是一旦库存降到预设的水位(再订货点,ROP),就启动订货机制,驱动供应链补充一定数量的货(订货量,ROQ);在货来到之前,库存继续下降,直到订的货到达,拉高库存的水位,然后开始下一个循环,如图1[1]。再订货点法在企业里使用很广,它的几个参数,在此稍作解释。

供应链管理的"儒家"与"法家"

| 暂无评论

传统的日本供应链是长期关系,或者说,更像儒家的做法(这里说的"传统",主要指上世纪末日本崛起的那段时间。在过去二三十年里,日本经历了显著的变化,在有些做法上与欧美更加趋同)。在长期关系下,绩效考核相对次要。这就如一家人,相互之间很少会设定指标。而约束双方行为的呢,也正是长期关系,是未来----在长期关系下,双方都有很多可失去的,所以就更加理性。

数据分析:计划工作的起点

| 暂无评论

有位职业经理人跟我说,公司除了在行业数据研究领域有专业的分析人员外,其余的计划人员都没有数理统计的背景,言下之意是数据分析能力很薄弱。这是个千亿级的企业,计划员工多年来靠传帮带的方式培养,以数据搜集、汇总为主,在需求预测上严重依赖销售、产品和高管的判断。

增长至上,企业普遍陷入"响应陷阱"

| 暂无评论

在多年的增长至上战略下,企业进入越来越多的细分领域,业务越来越多元化,导致需求越来越复杂,需求的变动也越来越难以管理。而后端的供应链呢,层层库存加上重资产,就如一个大胖子,臃肿迟滞,响应速度慢,响应成本高。需求和供应不能有效匹配,能做快的做不便宜,能做便宜的做不快,就成了各行各业的老大难。

时间序列的预测:移动平均法

| 暂无评论

移动平均法是用一组最近的历史需求,来预测未来一期或多期的需求。这是时间序列最常用的方法之一。当每期的历史需求权重一样的时候,我们就叫简单移动平均(一般简称为移动平均);当权重不同的时候,我们就叫加权移动平均。在加权移动平均中,需求历史越近,权重一般越大,也就是说更重视最新的信息,但所有的权重加起来等于1。

销售目标当需求预测,你的麻烦就大了

| 暂无评论

在《信号与噪声》一书中,特纳·希尔佛阐述道,预测之所以重要,是因为它连接着主观世界与客观现实。在企业里,哪个职能代表主观世界?销售----销售天生是乐天派,总是生活在希望中。哪个职能代表客观现实?供应链----供应链天生更加现实,因为他们知道,把现金变成库存容易,把库存变回为现金可就难了。而这主观与客观呢,就体现在销售预测、需求预测上。

【案例】外包过度,核心竞争力丧失

| 暂无评论

菲亚特是意大利的汽车制造商。过犹不及。在这个案例里,我们会回顾菲亚特的外包历程,探讨外包过度是如何影响菲亚特的核心竞争力,以及菲亚特是采取什么样的措施来补救的。

供应链管理的日本起源

| 暂无评论

供应链管理产生于上世纪80年代,大背景是日本崛起带来的全球竞争。从汽车到家电到半导体,从消费品到工业品到航天航空,日本企业的质量好、价格低、速度快,日本制造成了美国的噩梦。

需求预测:供应链博弈的一大焦点

| 暂无评论

我们经常说,供应链要么是订单驱动(拉),要么是预测驱动(推)。其实不管是推还是拉,从供应链的角度来看,最终都是预测驱动,因为一个人的订单注定是另一个人的预测。比如小姑娘在网上买衣服,她得给商家下订单,是基于她预测未来会穿这衣服。不过到她的衣橱里看看,有多少件衣服买来后就再也没碰过?很简单,小姑娘的预测失败了呗。

畅销专著

  • Supply chain management: high cost, high inventory, heavy asset solutions

畅销经典

  • Purchasing and Supply Chain Management

关于此归档

这里是February 2024的所有日记,它们按照时间从新到老排序。

上一篇日记January 2024

下一篇日记March 2024

首页归档页可以看到最新的日记和所有日记。