以前我们谈到,一线销售做预测,颗粒度太小,准确度不高;责任考核机制缺失(没见过哪个销售丢了工作,是因为预测准确度低),而没有考核机制的事情是做不好的。既然如此,为什么那么多的企业都在由一线销售做预测?
计划预测 分类中的最新日记
我经常问职业人,有谁预测过自家的用水量?大家都说没有:做预测的是水务局,他们预测整个城市的用水量,确保水厂有足够的水,大家用时打开水龙头就行了。大家也从没见过水务局深入到千家万户,让每家每户"提需求",谁预测谁有水,谁不预测就没水。那我们为什么有那么多的公司,一而再地要求一线销售、直接用户提需求(做预测)呢?
预测中,预测的灵敏度(响应度)和准确度经常相抵触:灵敏度高了,准确度就下降;准确度高了,灵敏度不一定高。
在《读者》上看到王蒙的一句话,很有感触:"凡人容易滑向经验主义,圣人容易走向教条主义"。经验主义是感性的,局部的;教条是理性的,有一定的普适性。圣人之所以是圣人,是因为他们经多识广,"数据"充分,总结提炼出了规律性的东西。《读者》上还有一篇文章,说普通人的盲区是"过于依赖自己的直觉",专家的盲区则是"过于相信自己的理性和经验"(《到底谁不靠谱》,作者人神共奋,《读者》2019年第4期),跟王蒙之言有异曲同工之妙。
计划由人做,人是有缺陷的,表现为各种偏见。不管是获取信息、处理信息,还是在输出信息、反馈判断结果的时候,人们都可能有意无意地掺入自己的偏见。这是人的天性,作为管理者,我们得正视并寻求解决方案。这里我们主要想讲三种偏见,以及如何应对。
季节性强,生命周期短,比如女孩子们穿的漂亮衣服,需求的不可预见性高,预测多了,呆滞风险大增;预测少了,补货周期又长,补货几无可能。这就相当于一锤子买卖,我们这里探讨一下该怎么预测。
案例企业是个代理商,代理上万个产品,服务几百个客户。客户的产品生命周期在缩短,产品更迭频繁。案例企业的挑战呢,就是没法及时探知变动,调整预测,结果是短缺与过剩并存。
我接触过几个软件公司,都是开发计划软件的。他们有的基于数理统计,提供多种预测模型以供择优选用;有的基于人工智能,通过机器学习,为需求预测和库存计划提供独特的解决方案。这些软件都远非完美,不过整体而言,要比一帮计划员拍脑袋、各行其是强。但是,很多企业就是不愿采用,或者即便实施了计划软件,实际工作中还是在Excel中手工做计划。
对于执行职能来说,计划就是计划,好像是个单一职能;但对于计划职能来说,计划还会细分,从需求计划到库存计划到生产计划,从中心仓到前置库位的计划,从新产品到成熟产品的计划,在具体的职责上的侧重点都有所区别。不过就绩效考核而言,这些计划职能却有很多共性,主要表现在服务水平,库存周转和呆滞库存等三方面。
有个企业的需求计划由各大区提交,在总部汇总,预测准确度历来不高,造成供应链的很多库存问题。供应链部门就建立了需求评审制度,让总部的营销、市场、财务和供应链等部门评审需求预测。但大区的销售们不满意,认为评审增加了一环,阻隔了销售与生产的有效对接。案例企业就问我,需求评审流程该如何设置。
在需求预测上,层层报批是种很常见的做法。
VMI是供应商管理库存的缩写,英语的全称是Vendor Managed Inventory,最早在零售行业出现(传统上,那个行业习惯于把供应商称为Vendor,更正式的叫法是Supplier),由沃尔玛和宝洁于上世纪80年代率先导入。我们这里把VMI当做一个专题讨论,主要是因为这些年来VMI应用广泛,但由于计划和管理不善,VMI又造成了诸多问题,不光是给供应商造成损失,也严重影响到采购方。
需求可以分解成两部分:存量和增量。简单地说,存量就是经常性的业务。比如你开了个小饭馆,每天中午大概有50人来吃饭,这就是存量。存量一般是有规律可循的,能够通过数据分析获取。增量是变化的部分,比如附近的公司办活动,要多订30份盒饭。增量是在存量基础上的变化,因为发生了显著改变需求的事情。"从数据开始"指的是存量,"由判断结束"指的是增量,两者叠加,构成整体预测。
案例企业的需求相当复杂,主要分三大块:大客户,渠道客户,零星散户。大客户和渠道走的是传统的线下业务,是典型的B2B;零星散户走的是线上电商业务,通过App下订单,虽然是小商户,却跟典型的B2C业务很像。线上、线下业务并存,大客户、渠道和散户对需求的影响方式也各不相同:大客户的需求变动主要是客户驱动,比如客户自己的促销、活动等;渠道和零星散户则主要由案例企业自己驱动,比如渠道政策、线上活动等。
一提到新品计划,很多人的第一反应就是可计划性太低,这就自然而然地把它推到销售、产品端,由那些职能兼职,变成拍脑袋为主了。其实不然,就如我们前面详细阐述过的,即便是用专家判断法做新品的初始预测,也得严格遵守"从数据开始,由判断结束"的计划流程,数据分析至始至终贯穿期间,主导整个专家判断流程。
从数据开始,并不是只收集数据,更重要的是分析数据,从数据中发现规律,指导后续的工作。这是我从雀巢的一位计划总监的报告中体会到(如图)。
深圳培训正在报名
一谈起数据分析,人们经常抱怨的是没数据。就如一位职业经理人说的,公司多年来快速发展,到千亿规模了,还是靠"肩扛手拉",从Excel到Excel,没有系统的历史数据积淀,也没有数据模型,怎么办?
上海、深圳课程正在报名
案例企业有着强大的粉丝团体,一直走的是粉丝经济,虽然在向品牌经济过渡,但粉丝经济还是营收的重要构成。为了最大化粉丝收益,案例企业就不断推出新品,基本上是每周都有新品上市。该企业走的是中高端、差异化路线,快时尚,品种多,批量小,首批推出一般也就几百到几千件。多种少量让预测更难做,要么过剩,要么短缺,在案例企业得到充分体现。
上海、深圳课程正在报名
有位职业经理人跟我说,公司除了在行业数据研究领域有专业的分析人员外,其余的计划人员都没有数理统计的背景,言下之意是数据分析能力很薄弱。这是个千亿级的企业,计划员工多年来靠传帮带的方式培养,以数据搜集、汇总为主,在需求预测上严重依赖销售、产品和高管的判断。
距离开课还有 2 天
在《信号与噪声》一书中,特纳·希尔佛阐述道,预测之所以重要,是因为它连接着主观世界与客观现实。在企业里,哪个职能代表主观世界?销售----销售天生是乐天派,总是生活在希望中。哪个职能代表客观现实?供应链----供应链天生更加现实,因为他们知道,把现金变成库存容易,把库存变回为现金可就难了。而这主观与客观呢,就体现在销售预测、需求预测上。
距离开课还有 5 天
距离开课还有 7 天
我们经常说,供应链要么是订单驱动(拉),要么是预测驱动(推)。其实不管是推还是拉,从供应链的角度来看,最终都是预测驱动,因为一个人的订单注定是另一个人的预测。比如小姑娘在网上买衣服,她得给商家下订单,是基于她预测未来会穿这衣服。不过到她的衣橱里看看,有多少件衣服买来后就再也没碰过?很简单,小姑娘的预测失败了呗。
距离开课还有 9 天
这些年来,我每年拜访、服务几十家本土企业,他们的年度营收上至千亿,下至几千万、刚过亿,规模大不相同,问题却惊人地相似:供应链的成本做不低,交付做不快,库存水平居高不下。这些问题,表面上看是供应链的执行不到位;但仔细探究,根源却都离不开计划,比如需求预测变动频繁,紧急需求频发,给供应链没有足够的响应时间等。
距离开课还有 12 天
在预测时间序列上,指数平滑法是另一类常用的方法。该方法最先由布朗提出,他认为时间序列的态势具有稳定性或规则性,所以可被合理地顺势推延;最近发生的,在某种程度上会持续到最近的未来,所以历史信息越新,其所占权重也越大[1]。指数平滑法其实是一种特殊的移动平均法,是一种加权移动平均,特点是权重按照几何数级递减,越老的数据权重越小。
距离开课还有 14 天
供应链的大部分活动,都是围绕一个个的采购订单完成,比如生成采购订单,发送给供应商,确认交期、单价、数量,提前或者延后交付等,都耗费了操作层面员工的大量精力。
如果说物料需求计划(MRP)主要是处理需求的话,可承诺逻辑(ATP)则是聚焦供应,串起供应链的那条线。在ERP系统里,这两个逻辑结伴而行,完成需求与供应的匹配;这里分开讲,主要是防止混淆两者的细节。
在计算安全库存的时候,当需求相对平稳的时候,我们一般用过去一段时间的平均需求当做预测,计算这段需求历史的标准差,来量化需求的不确定性。这里有两个问题要考虑:其一,样本的数量,即用多少个数据点来计算;其二,数据汇总的颗粒度,比如按日,还是按周或按月汇总。
ERP的核心功能之一是物料需求计划(MRP),把计划、物控、客服、采购从从海量的手工操作中解放出来。但实施ERP以后,真正能跑MRP的企业并不多。也就是说,生产和采购计划仍旧在Excel上做。有些企业即使启用了MRP模块,可还是在手工录入生产计划,而ERP能做的呢,只是自动生成采购计划,充其量是个订单管理和进出存系统,发挥执行记录的功能而已。
有个企业是典型的销售提需求----销售兼职需求计划。几十个销售预测未来三个月的需求,每月更新一次,按照客户汇总,上传到ERP系统,驱动后端的供应链来执行。我去这个公司培训,负责公司最大客户的销售经理说,让帮忙看看这个客户的备货计划。当天培训结束后,我们就坐下来谈。起初想,他和他的团队应该问需求预测、安全库存方面的问题----这是计划工作的核心任务。谁知道打开Excel表格后,所有的问题都归结到执行操作上,在信息化水平高的公司由 ERP做的那些事。
有个代理商,库存和交付一直是个问题:短缺时有发生,而手头的整体库存却居高不下。他们想从需求预测和库存计划着手,对付这个问题。他们的计划主管首先导出几个产品的历史销量,做了折线图想从中发现规律,却看不出什么门道。问我该怎么办,我就把数据要过来----谈到具体的计划问题,不看数据就无异于瞎谈。
所有的预测都是错的,一个好的需求预测需要定期调整,逐渐逼近。但这并不是说供应链可以无限响应:供应链的柔性不是无限的。当进入一定的时间窗口,我们要控制需求预测的调整,以保护供应链的效率。否则,会造成过高的运营成本和产能浪费:频繁的调整会打乱整体的生产、配送计划,让整体交付更加不可预计;越是不可预计,越需要人为干预,这就陷入恶性循环,增加了不确定性,最终会转化为成本和库存。
没人喜欢催货,但催货是供应链执行中不可避免的一部分。极端情况是行业性短缺,比如关键元器件大面积短缺,上至老总,下至采购员,都在催货,连一些百亿级的大公司也不例外:他们的供应链老总经常不在,问干什么去了,答曰到供应商那里催货了----根据催货者的头衔,供应商决定分配产能;为了不输在"起跑线"上,那就派老总去催货。
你不需要是个计划专家,才能做预测。预测的能力不是天生的,人人都可以练就。
新冠疫情没开始多久,美国就算是掉进坑里了,新冠确诊病人很快超过40万了(2020年4月7日)。特朗普可以说是焦头烂额,每隔几天就得在白宫讲话,面对媒体咄咄逼人的问题。
行业性短缺状态下,企业过激反应,大幅拔高安全库存和需求预测,不但解决不了短缺问题,反而造成后续的过剩问题,应了"所有的短缺,最后都是以过剩结束"。特别是集体决策下,人们倾向于承担更大的风险,往往超出企业的承受力度(这就是为什么"造反"总是跟"聚众"紧密相连);同样是"集体"决策,库存的责任不明确,补救措施就不及时,把本来可以减轻的风险没有减轻。
我们之所以能够预测,是基于(1)时间序列的延续性(也叫连贯性);(2)变量之间的相关性(也叫类推性)。计划者的任务,一方面是分析历史数据,总结这样的延续性、相关性,然后是应用这样的关联性,对未来做出预判,指导供应链执行来提前准备。
多余库存是超出正常的周转库存、安全库存的库存。
深圳培训正在报名
对需求预测来说,上世纪50、60年代可以说是人才辈出。这里我想特别介绍一下美国的HMMS研究团队。这个团队的名称来自四位研究者姓氏的第一个字母,当时他们都在卡内基工学院(后来与梅隆学院合并,成为今天蜚声海外的卡内基梅隆大学),旨在是寻找更好的决策机制,以帮助工业界更好地应对种种库存、生产和计划问题。这些问题在宏观层面导致经济危机,在微观层面让企业经常处于应急状态----要么是赶工加急,要么是产能闲置和库存积压。
(7/10-14)深圳培训正在报名
在有些行业,压货行为非常普遍,人为加剧了需求的变动性,造成诸多库存和产能问题。
批处理是拖长周转周期,增加周转库存的重要因素。比如本来是随到随处理,周转时间短;批处理下,需要积攒一段时间,周转时间就长。这听上去是个生产制造的概念,其实普遍的程度远超我们想象。
距离开课还有 2 天
在周转周期里,走流程是很大一部分。就如一位名为"风子"的"供应链管理实践者"公众号读者所言:"时间的流逝往往不是出自供应商的产品生产环节,而是自家公司的信息流,从签订订单到执行订单的时间过长"。而走流程中的相当一部分事情,比如审批,在客户眼里没有价值但往往不得不做,一大根因就是信息不对称,可以通过信息化来帮助解决。
距离开课还有 5 天
把库存分解为过程库存、安全库存、过剩库存和风险库存,给我们提供了结构化的方法,来呈现库存风险,以控制整体库存。这里我们以原材料为对象,介绍这一方法的具体应用。
距离开课还有 7 天
预测模型的选择是个复杂过程,需要考虑多方面的因素,再配以职业判断。计划软件往往按照特定的指标判断预测模型的优劣,但很难综合考虑多种因素,特别是历史数据没有反映的信息。这就是对计划软件建议的模型,有经验的计划人员总是戒心重重的原因了。
企业的资源不是无限的,所以降库存是不可避免的。但在降库存的方式上,很多企业采取的是"搞运动"的方式,没法触及根源,屡降屡升,屡升屡降。
简单地说,VMI就是供应商在采购方或第三方的仓库放一堆货,由供应商自主安排补货,把库存维持在最低和最高计划水位之间。
就如有的人非但帮不了忙,反而帮倒忙一样,并不是所有的预测方法都增加价值。有时候,人类一思考,上帝就发笑,作为还不如不作为,预测还不如不预测。比如在颗粒度很小的地方做预测,或者由销售、用户拍脑袋做预测,预测准确度太低,往往还不如不预测,直接用上期的实际值当做下次的预测("幼稚预测"),亦即常见的"卖一补一"。
这里把VMI当做一个专题讨论,主要是因为这些年来VMI被广泛采用,如果管理得当,对采购方和供应商都有好处;但由于计划和管理不善,VMI又给双方造成了诸多问题。
一位经理人说,公司的系统里有一套算法,来帮助计划员设置安全库存。用了一段时间后,发现系统建议的库存整体偏低。我问,既然这样,那为什么你的挑战却是降库存呢?不用他回答我都知道答案:系统建议偏低,计划人员就手工调整,多放一些库存;但人员水平良莠不齐,不知道设置合适的库存水位,最终就以高库存为解决方案。
一提起绩效考核,大家联想到的就是"紧箍咒",怎么能"保护"计划职能呢?没有绩效考核,自由自在地做事,这不最好嘛!对于强势职能没错,但对弱势职能则是大错特错。要知道,没有绩效考核指标,并不是说对这个职能就没有期望,做到什么地步就算什么,而是完全由强势职能说了算,强势部门会更加强势,弱势部门会更加弱势,失去了最起码的制衡,对企业来说并非好事。
时间序列可以分解为三种成分:水平部分(平均值),趋势部分(上升或下降),季节性部分(周期性的重复),剩余的就是随机变动,即前三者都没法解释的"杂音"。我们常见的时间序列,根据复杂度的不同,一般上述三种成分中的一种、两种或三种组合而成。当然,你也可以把水平部分当成趋势的特例,或者趋势的一部分。那么,时间序列就可简化为两部分:趋势和季节性,以及两者之外的随机变动。下面这个例子就是这样分解的[1]。
安全库存就如赌博,面对业务的不确定性,要么赌中,要么赌不中。或者说,企业做生意就如赌博,要么赌中,要么赌不中。而职业经理人的任务呢,就是争取提高赌中的概率,以最小的总成本做成最多的业务。
在库存计划领域,除了安全库存,经常打交道的还有再订货点(或者就叫订货点)。其逻辑是一旦库存降到预设的水位(再订货点),就启动订货机制,驱动供应链补充一定数量的货(订货量);在货来到之前,库存继续下降,直到补的货到达,拉高库存的水位,然后开始下一个循环,如图1。再订货点法在业界使用很广泛,对于它的几个主要参数,我们在此稍作解释。
移动平均法是用一组最近的历史需求,来预测未来一期或多期的需求。这是时间序列最常用的方法之一。当每期的历史需求权重一样的时候,我们就叫简单移动平均(一般简称为移动平均);当权重不同的时候,我们就叫加权移动平均。在加权移动平均中,需求历史越近,权重一般越大,也就是说更重视最新的信息,但所有的权重加起来等于1。
我在企业培训、咨询时,经常问他们服务水平目标是什么,从销售到供应链,大家经常是大张嘴,一笔糊涂账。
我在招聘计划人员,或者评估一个企业的库存计划水平时,都会问到一个同样的问题:你是如何设定安全库存水位的?这个问题的基本程度,就如问一个成年人是怎么用筷子的一样。但在我面试过的几十个计划人员中,能给出满意答案的是凤毛麟角。这再一次证明了,最简单的往往是最难的。
一提起信息化,首先想到的往往是让计算机帮我们做决策,亦即智能化。但智能化的前提是自动化:离开自动化,数据就难以稳定地产生和获取,也很难释放人力资源来做好决策。所以说,在信息化的过程中,先要自动化,然后才是智能化。
这个案例聚焦产品上新前,即在新品开发过程中,伴随着越来越多的信息,如何建立定期更新预测的机制,指导供应链更精准地响应。
需求预测对付平均需求,安全库存是为了应对不确定性,即平均需求外的需求。经常有人说,那把预测适当拔高点,不也同样解决问题?其实不然。
预测做砸了,并不是什么见不得人的事;不愿承认做砸了,才是真正应该羞耻的。对于错误,用美国著名橄榄球教练布莱恩的话讲,就是(1)承认错误;(2)汲取教训;(3)不要重犯。这个三步曲的起点是你得承认做砸了。不承认,就不能汲取教训,就要冒重犯的风险。
我们知道,供应链管理不是个简单的职能概念;它包括一系列的职能。
根据供应商的绩效和可替代性,我们可把供应商分为五类,如图1:
1.战略供应商(决定公司生死存亡,绩效不错,替代困难);
2.优选供应商(供应绩效好,但可替代,公司优先合作);
3.资格未定供应商(未经验证的新供应商,或者"留校察看"的老供应商);
4.被动淘汰供应商(不给新生意,但老生意继续做);
5.主动淘汰供应商(不但不给新生意,而且移走老生意)。
计划和执行之间,经常为这事争执:未来多长时间内的需求预测可以调整,执行有没有义务做到?这就涉及到计划的冻结期、半冻结期和自由期(如图)。
在我的职业生涯中,有好几年是负责库存计划,跟全球的客户有八九十个库存寄售点。在日本,东芝这样的客户体量很大,需求相当平稳,离我们的仓库也就几十分钟的车程,但在客户现场寄售的库存动辄放着三四周的货。在一个以精益著称的国家,这一点也算不上"精益"。好奇心起,我就细究供应链的各个环节,看这些库存都是怎么来的,发现到处都是批处理的影子。
2018年,《供应链的三道防线:需求预测、库存计划、供应链执行》出版以来,反响很好,在京东上很快就上升到供应链销量榜的第二位(第一位还是我的红皮书《采购与供应链管理:一个实践者的角度》)。
需求计划有两大关键,一是尽量作准,二是尽快纠偏。我们这里谈尽快纠偏。
我以前带计划团队的时候,有个计划员老是抱怨,说销售和客户"作孽",没有提前告诉他,这就是为什么现在有一堆的过剩,或者整天在催料。我就问,销售没说,那你问了没有?答案往往是没有----这个计划员整天对着计算机,习惯于"跪受笔录",内部客户叫干啥就干啥,而不是主动出击,提前探知内部客户的需求。他没说,罪在不赦;你没问,同样要挨板子。
计划的大错特错,主要是因为销售和运营协调流程没打通,做生意的和做运营的严重脱节,组织博弈导致信息严重不对称,导致预测准确度太低。简单地把销售目标当成需求预测,没法群策群力整合跨职能智慧,层层博弈导致的牛鞭效应,都可能造成需求预测的大错特错,以及严峻的库存和交付问题。
在再订货机制中,再订货点相对简单,但补货机制相对复杂,还有很多细节,比如是定量还是不定量,是随时补货还是定期补货,我们下面接着讲。
案例企业是个女装电商。
我们行外人很难想象的是,服装从开发到上市的整个周期,需要一年以上的时间(快时尚、电商可能快点)。比如现在开发的不是今年卖的,而是明年这个季节的服装。周期长,款式多,SKU复杂,从面料到款式到颜色,服装的需求预测历来挑战重重。这些问题,特别在快时尚领域,还没有完善的解决方案;但多年来,服装行业也总结了一系列的经验智慧,把预测尽量做准,做不准的话尽快纠偏。
在供应链的每一个环节,都有相应的计划,驱动相应的执行职能。比如计划在决定买什么,买多少;生产什么,生产多少;配送什么,配送多少。供应链的绩效问题,包括交付和库存,计划没想到,执行就很难做到,即便做到的话,也是以高昂的成本和库存为代价。我们的目标是不但要做到,而且要想到。企业越大,想到就越重要。
一个公司动辄有几百、几千甚至几万个产品,究竟哪些可以预测,该计划;哪些不能预测,不应该建库存?
考不考核预测准确度,考核哪个职能,如何考核,历来是需求预测的一个热点话题。
你或许会说,我知道有个计划要比没有强,但不确定性那么大,问题那么复杂,就是不知道从哪里下手。
需求计划需要对接销售和运营,对人的资质要求相当高。可以说,在供应链管理领域,需求计划对人的综合素质要求最高。理想的需求计划人员需要具备三方面的条件:
有个快消品公司,主要产品是护肤、美容用品。公司采取轻资产运作,全部由代工厂加工。比如生产一款洗面奶,他们需要找到外盒工厂、软管工厂、塑封膜工厂,帮助生产所需的包材,完成后直接发货到化妆品加工厂,由后者灌装,把成品发送到该公司,再由该公司进行销售。作为公司的采购职能,虽然名义上是采购,其实履行的是供应链管理职责,是实际上的供应链管理部门。
企业大了,摸着石头过河的实干心态不能丢。但不可否认的是,企业越大,就越经不起折腾,越需要确定性。计划就是在不确定性中寻找确定性。用一位名叫董志江的读者的话说,公司小的时候是枪杆子指挥笔杆子,公司大了一定是笔杆子指挥枪杆子。这也是凸显了计划的重要性。
对于执行职能来说,计划就是计划,好像是个单一职能;但对于计划职能来说,计划还会细分,从需求计划到库存计划到生产计划,从中心仓到前置库位的计划,从新产品到成熟产品的计划,在具体的职责上的侧重点都有所区别。不过就绩效考核而言,这些计划职能却有很多共性,主要表现在服务水平,库存周转和呆滞库存等三方面。
需求计划的"进化史",也是需求计划从单一职能向跨职能、跨企业协作发展的历史,从避免大错特错向追求精益求精的发展历程。
VMI是供应商管理库存的缩写,英语的全称是Vendor Managed Inventory,最早在零售行业出现(传统上,那个行业习惯于把供应商称为Vendor,更正式的叫法是Supplier),由沃尔玛和宝洁于上世纪80年代率先导入。我们这里把VMI当做一个专题讨论,主要是因为这些年来VMI应用广泛,但由于计划和管理不善,VMI又造成了诸多问题,不光是给供应商造成损失,也严重影响到采购方。
我们一直在强调,需求预测得"从数据开始,由判断结束",主客观结合,得到准确度最高的预测。有的公司说,我们也遵循这个原则,不过是销售提需求,计划做调整。这看上去也是"从数据开始,由判断结束",却是由错误的人在做正确的事,自然不会有什么好结果。
以前我们谈到,一线销售做预测,颗粒度太小,准确度不高;责任考核机制缺失(没见过哪个销售丢了工作,是因为预测准确度低),而没有考核机制的事情是做不好的。既然如此,为什么那么多的企业都在由一线销售做预测?
一提到新品计划,很多人的第一反应就是可计划性太低,这就自然而然地把它推到销售、产品端,由那些职能兼职,变成拍脑袋为主了。其实不然,就如我们前面详细阐述过的,即便是用专家判断法做新品的初始预测,也得严格遵守"从数据开始,由判断结束"的计划流程,数据分析至始至终贯穿期间,主导整个专家判断流程。
以前我们谈到,一线销售做预测,颗粒度太小,准确度不高;责任考核机制缺失(没见过哪个销售丢了工作,是因为预测准确度低),而没有考核机制的事情是做不好的。既然如此,为什么那么多的企业都在由一线销售做预测?
在很多企业,一线销售提需求是个普遍的现象。理由看上去也很充分:他们最接近客户,最可能知道客户要什么。其实,除非是客户定制化的需求,一线销售在做需求预测上挑战多多。
案例企业有着强大的粉丝团体,一直走的是粉丝经济,虽然在向品牌经济过渡,但粉丝经济还是营收的重要构成。为了最大化粉丝收益,案例企业就不断推出新品,基本上是每周都有新品上市。该企业走的是中高端、差异化路线,快时尚,品种多,批量小,首批推出一般也就几百到几千件。多种少量让预测更难做,要么过剩,要么短缺,在案例企业得到充分体现。
我经常问职业人,有谁预测过自家的用水量?大家都说没有:做预测的是水务局,他们预测整个城市的用水量,确保水厂有足够的水,大家用时打开水龙头就行了。大家也从没见过水务局深入到千家万户,让每家每户"提需求",谁预测谁有水,谁不预测就没水。那我们为什么有那么多的公司,一而再地要求一线销售、直接用户提需求(做预测)呢?
新品计划的准确度低,关键是伴随着更多的需求历史,要及时滚动更新,同时平衡库存风险、断货风险和运营成本。
在《读者》上看到王蒙的一句话,很有感触:"凡人容易滑向经验主义,圣人容易走向教条主义"。经验主义是感性的,局部的;教条是理性的,有一定的普适性。圣人之所以是圣人,是因为他们经多识广,"数据"充分,总结提炼出了规律性的东西。《读者》上还有一篇文章,说普通人的盲区是"过于依赖自己的直觉",专家的盲区则是"过于相信自己的理性和经验"(《到底谁不靠谱》,作者人神共奋,《读者》2019年第4期),跟王蒙之言有异曲同工之妙。
计划由人做,人是有缺陷的,表现为各种偏见。不管是获取信息、处理信息,还是在输出信息、反馈判断结果的时候,人们都可能有意无意地掺入自己的偏见。这是人的天性,作为管理者,我们得正视并寻求解决方案。这里我们主要想讲三种偏见,以及如何应对。
在预测时间序列上,指数平滑法是另一类常用的方法。该方法最先由布朗提出,他认为时间序列的态势具有稳定性或规则性,所以可被合理地顺势推延;最近发生的,在某种程度上会持续到最近的未来,所以历史信息越新,其所占权重也越大[1]。指数平滑法其实是一种特殊的移动平均法,是一种加权移动平均,特点是权重按照几何数级递减,越老的数据权重越小。
我接触过几个软件公司,都是开发计划软件的。他们有的基于数理统计,提供多种预测模型以供择优选用;有的基于人工智能,通过机器学习,为需求预测和库存计划提供独特的解决方案。这些软件都远非完美,不过整体而言,要比一帮计划员拍脑袋、各行其是强。但是,很多企业就是不愿采用,或者即便实施了计划软件,实际工作中还是在Excel中手工做计划。
在需求预测上,层层报批是种很常见的做法。
需求可以分解成两部分:存量和增量。简单地说,存量就是经常性的业务。比如你开了个小饭馆,每天中午大概有50人来吃饭,这就是存量。存量一般是有规律可循的,能够通过数据分析获取。增量是变化的部分,比如附近的公司办活动,要多订30份盒饭。增量是在存量基础上的变化,因为发生了显著改变需求的事情。"从数据开始"指的是存量,"由判断结束"指的是增量,两者叠加,构成整体预测。
案例企业的需求相当复杂,主要分三大块:大客户,渠道客户,零星散户。大客户和渠道走的是传统的线下业务,是典型的B2B;零星散户走的是线上电商业务,通过App下订单,虽然是小商户,却跟典型的B2C业务很像。线上、线下业务并存,大客户、渠道和散户对需求的影响方式也各不相同:大客户的需求变动主要是客户驱动,比如客户自己的促销、活动等;渠道和零星散户则主要由案例企业自己驱动,比如渠道政策、线上活动等。
你不需要是个计划专家,才能做预测。预测的能力不是天生的,人人都可以练就。
一谈起数据分析,人们经常抱怨的是没数据。就如一位职业经理人说的,公司多年来快速发展,到千亿规模了,还是靠"肩扛手拉",从Excel到Excel,没有系统的历史数据积淀,也没有数据模型,怎么办?
在库存计划领域,除了安全库存,经常打交道的还有再订货点(或者就叫订货点)。其逻辑是一旦库存降到预设的水位(再订货点,ROP),就启动订货机制,驱动供应链补充一定数量的货(订货量,ROQ);在货来到之前,库存继续下降,直到订的货到达,拉高库存的水位,然后开始下一个循环,如图1[1]。再订货点法在企业里使用很广,它的几个参数,在此稍作解释。
有位职业经理人跟我说,公司除了在行业数据研究领域有专业的分析人员外,其余的计划人员都没有数理统计的背景,言下之意是数据分析能力很薄弱。这是个千亿级的企业,计划员工多年来靠传帮带的方式培养,以数据搜集、汇总为主,在需求预测上严重依赖销售、产品和高管的判断。
移动平均法是用一组最近的历史需求,来预测未来一期或多期的需求。这是时间序列最常用的方法之一。当每期的历史需求权重一样的时候,我们就叫简单移动平均(一般简称为移动平均);当权重不同的时候,我们就叫加权移动平均。在加权移动平均中,需求历史越近,权重一般越大,也就是说更重视最新的信息,但所有的权重加起来等于1。
在《信号与噪声》一书中,特纳·希尔佛阐述道,预测之所以重要,是因为它连接着主观世界与客观现实。在企业里,哪个职能代表主观世界?销售----销售天生是乐天派,总是生活在希望中。哪个职能代表客观现实?供应链----供应链天生更加现实,因为他们知道,把现金变成库存容易,把库存变回为现金可就难了。而这主观与客观呢,就体现在销售预测、需求预测上。
我们经常说,供应链要么是订单驱动(拉),要么是预测驱动(推)。其实不管是推还是拉,从供应链的角度来看,最终都是预测驱动,因为一个人的订单注定是另一个人的预测。比如小姑娘在网上买衣服,她得给商家下订单,是基于她预测未来会穿这衣服。不过到她的衣橱里看看,有多少件衣服买来后就再也没碰过?很简单,小姑娘的预测失败了呗。
我们之所以能够预测,是基于(1)时间序列的延续性(也叫连贯性);(2)变量之间的相关性(也叫类推性)。计划者的任务,一方面是分析历史数据,总结这样的延续性、相关性,然后是应用这样的关联性,对未来做出预判,指导供应链执行来提前准备。
这些年来,我每年拜访、服务几十家本土企业,他们的年度营收上至千亿,下至几千万、刚过亿,规模大不相同,问题却惊人地相似:供应链的成本做不低,交付做不快,库存水平居高不下。这些问题,表面上看是供应链的执行不到位;但仔细探究,根源却都离不开计划,比如需求预测变动频繁,紧急需求频发,给供应链没有足够的响应时间等。
有个养殖企业,营收在几百亿的级别,长期以来是需求拉动:养殖场有需求,就提交库管,驱动采购来满足。需求拉动的问题有二:其一,给供应链的响应时间太少,经常成为紧急需求,导致加急赶工运营成本高,内部用户体验也差;其二,需求零散,难以聚合,缺乏规模效应,导致采购价格偏高----即便签订总量合同,拿得更好的价格,但因为需求是零散的,批次多,跨度长,供应商最终也往往要求随行就市,实际收取更高的价格。
对需求预测来说,上世纪50、60年代可以说是人才辈出。这里我想特别介绍一下美国的HMMS研究团队。这个团队的名称来自四位研究者姓氏的第一个字母,当时他们都在卡内基工学院(后来与梅隆学院合并,成为今天蜚声海外的卡内基梅隆大学),旨在是寻找更好的决策机制,以帮助工业界更好地应对种种库存、生产和计划问题。这些问题在宏观层面导致经济危机,在微观层面让企业经常处于应急状态----要么是赶工加急,要么是产能闲置和库存积压。
就"从数据开始"而言,颗粒度越大,需求的聚合效应越明显,数理统计的可靠性就越大,预测的准确度也越高。但对"由判断结束"来说,颗粒度与准确度的关系就相对复杂。
公司小的时候由老板兼职,有点规模后由销售、生产、采购等相邻职能兼职,上了规模后就得有专职的需求计划职能。
对于小的需求变动,供应链有一定的纠偏和容错能力。比如预测相对偏低的话,可由安全库存、安全产能来应对;预测适当偏高的话,可以延迟供应商给我们的交付,或者手头库存暂时高一段时间。但这是有前提的:我们得尽快调整预测,否则长期累积下来,小洞变大洞就难补了。
就如有的人非但帮不了忙,反而帮倒忙一样,并不是所有的预测方法都增加价值。有时候,人类一思考,上帝就发笑,作为还不如不作为,预测还不如不预测。比如在颗粒度很小的地方做预测,或者由销售、用户拍脑袋做预测,预测准确度太低,往往还不如不预测,直接用上期的实际值当做下次的预测("幼稚预测"),亦即常见的"卖一补一"。
我们接下来讨论,未来多长时间内的需求预测可以调整,执行端必须得满足。这就涉及到计划的冻结期、半冻结期和自由期,如图 1:
一提起"长尾",人们容易觉得比较独特,容易联想起小众来。其实,大众是由小众组成的。要知道,需求越是细分,或者说越是在供应链的末端,就越呈现小众化。或者说,只要是足够细分,或者说供应链足够末梢,我们面临的注定就是"长尾"需求。我们说的供应链的末端,或者说最后一公里,放在库存计划上,就是如何应对此类"长尾"需求。
我在企业培训、咨询时,经常问他们服务水平目标是什么,从销售到供应链,大家经常是大张嘴,一笔糊涂账。
2018年,《供应链的三道防线:需求预测、库存计划、供应链执行》出版以来,反响很好,在京东上很快就上升到供应链销量榜的第二位(第一位还是我的红皮书《采购与供应链管理:一个实践者的角度》)。
一旦提起需求计划的绩效,一般人就会联想到预测的准确度。这没错,但不全面。所谓绩效,真正重要的是指跟客户、股东利益直接相关的东西。我不是说预测准确度不重要----预测准确度当然重要,因为会影响到客户和股东利益,但客户跟你做生意,股东买你的股票,有多少是因为你的预测准确度高?所以,对需求计划的绩效评估,要超越预测准确度本身,从客户和股东的视角来看待。
在很多公司,供应链苦于销售对库存不负责任。表面上看是销售不愿承担责任,根源其实是需求计划没有闭环的结果。
这个案例聚焦产品上新前,即在新品开发过程中,伴随着越来越多的信息,如何建立定期更新预测的机制,指导供应链更精准地响应。
SKU是英语里Stock Keeping Unit的缩写,直译过来是存货单元。举个例子。女孩子去买衣服,找到喜欢的款式,喜欢的颜色,还得找到自己的尺码----款式+颜色+尺码就是这里说的SKU。SKU是我们识别产品所必须的,也是商场进出存的最小单元。同样的款式、同样的颜色,中号跟小号是不同的SKU,所以需要两个不同的SKU编码来识别。
如果说计划是供应链领域专业度最高的职能的话,那么库存计划就是计划职能专业度最高的。而安全库存的设置呢,则是库存计划中技术含量最高的一块。
对于长周期物料,我们之所以专门探讨其需求预测,是因为它们对供应链的影响最为深远。对于供应链来说,一个行业之所以难以对付,关键就在于那些长周期物料,比如芯片,比如显示屏,比如定制化程度高的关键零部件。
与VMI常常一起出现的还有寄售。很多人搞不清两者的关系。其实,它们两者没关系:VMI说的是库存的管理责任,寄售说的是库存的所有权。在实践中,你可以用VMI而不用寄售,可以用寄售而不用VMI。当然两者并用的情况也很常见,以至于业界一旦提到VMI,首先想到的是库存也归供应商持有(寄售);而很多企业采用VMI的初衷呢,也是为了把库存压力转移给供应商。也就是说,很多人心目中的VMI其实是VMI加寄售。
季节性强,生命周期短,比如女孩子们穿的漂亮衣服,需求的不可预见性高,预测多了,呆滞风险大增;预测少了,补货周期又长,补货几无可能。这就相当于一锤子买卖,我们这里探讨一下该怎么预测。
一个苏州的公司问,我们让供应商建了VMI,但短料、呆滞频发,怎么办?我的答复是供应链的三道防线。他们问,三道防线中没有一个字是谈到VMI的,为什么能解决我们的问题?答曰:预测准确度低,第一道防线建不好,VMI要么是断货,要么是呆滞;库存计划不到位,第二道防线没建好,VMI的最低、最高库存不合理,问题当然是一大堆;需求预测和库存计划的不足,最后都得供应商的执行来弥补,这是供应链的第三道防线,要求我们选好、管好供应商,对我们的寻源和供应绩效管理提出更高的挑战。
对于执行职能来说,计划就是计划,好像是个单一职能;但对于计划职能来说,计划还会细分,从需求计划到库存计划到生产计划,从中心仓到前置库位的计划,从新产品到成熟产品的计划,在具体的职责上的侧重点都有所区别。不过就绩效考核而言,这些计划职能却有很多共性,主要表现在服务水平,库存周转和呆滞库存等三方面。
四分法给我们结构化的方法,来展现库存风险,以控制整体库存。这里我们以原材料为对象,介绍这一方法的具体应用。
VMI是供应商管理库存的缩写,英语的全称是Vendor Managed Inventory,最早在零售行业出现(传统上,那个行业习惯于把供应商称为Vendor,更正式的叫法是Supplier),由沃尔玛和宝洁于上世纪80年代率先导入。我们这里把VMI当做一个专题讨论,主要是因为这些年来VMI应用广泛,但由于计划和管理不善,VMI又造成了诸多问题,不光是给供应商造成损失,也严重影响到采购方。
在有些行业,压货行为非常普遍,人为加剧了需求的变动性。
一提到新品计划,很多人的第一反应就是可计划性太低,这就自然而然地把它推到销售、产品端,由那些职能兼职,变成拍脑袋为主了。其实不然,就如我们前面详细阐述过的,即便是用专家判断法做新品的初始预测,也得严格遵守"从数据开始,由判断结束"的计划流程,数据分析至始至终贯穿期间,主导整个专家判断流程。
前面多次讲过,行业性短缺状态下,过激反应,大幅拔高安全库存和需求预测,不但解决不了短缺问题,反而造成后续的过剩问题,应了"所有的短缺,最后都是以过剩结束"。特别是集体决策下,人们倾向于承担更大的风险,往往超出企业的承受力度;同样是"集体"决策,库存的责任不明确,补救措施就不及时,把本来可以减轻的风险没有减轻。
案例企业有着强大的粉丝团体,一直走的是粉丝经济,虽然在向品牌经济过渡,但粉丝经济还是营收的重要构成。为了最大化粉丝收益,案例企业就不断推出新品,基本上是每周都有新品上市。该企业走的是中高端、差异化路线,快时尚,品种多,批量小,首批推出一般也就几百到几千件。多种少量让预测更难做,要么过剩,要么短缺,在案例企业得到充分体现。
在《读者》上看到王蒙的一句话,很有感触:"凡人容易滑向经验主义,圣人容易走向教条主义"。经验主义是感性的,局部的;教条是理性的,有一定的普适性。圣人之所以是圣人,是因为他们经多识广,"数据"充分,总结提炼出了规律性的东西。《读者》上还有一篇文章,说普通人的盲区是"过于依赖自己的直觉",专家的盲区则是"过于相信自己的理性和经验",跟王蒙之言有异曲同工之妙。
案例企业的需求相当复杂,主要分三大块:大客户,渠道客户,零星散户。大客户和渠道走的是传统的线下业务,是典型的B2B;零星散户走的是线上电商业务,通过App下订单,虽然是小商户,却跟典型的B2C业务很像。线上、线下业务并存,大客户、渠道和散户对需求的影响方式也各不相同:大客户的需求变动主要是客户驱动,比如客户自己的促销、活动等;渠道和零星散户则主要由案例企业自己驱动,比如渠道政策、线上活动等。
有个工业品公司,项目型需求较多,一贯靠一线销售提需求。让每个销售预测自己跟踪的项目,预测的颗粒度小,预测准确度不高,呆滞库存是个大挑战。于是该企业就开始考核预测的准确度:你预测了几个,就得用掉几个。销售跟库存挂上钩了,就迟迟不肯提需求,直到需求快落地时,数量的准确度没什么问题了,但给供应链却没有时间来响应。
人们经常说,他们的供应链是推式的,由预测驱动;或者拉式的,由订单驱动。其实,供应链没有100%的推,否则库存风险太大,股东受不了;也没有100%的拉,否则交付太慢,客户体验太差。每条供应链都是推拉结合的:先根据需求预测推到一定地步,以获取规模效益、降低成本、提高响应速度;再由客户订单拉动,以满足差异化的需求,并降低库存风险。
根据风险的高低,我们把多余库存分为两部分:如果能在一定时间内消耗掉,风险较低,就叫过剩库存;一定期限内预计消耗不掉,风险较高,就叫风险库存。多余库存的驱动因素是组织行为,比如预测失败,订单取消,最小起订量,策略备货,设计变更等。
供应链上的各种问题,都会或多或少在库存上体现出来。比如信息沟通不充分,需求的不确定性增加,导致安全库存上升;执行能力差,供应的不确定性增加,也导致安全库存上升;设计变更多,设计变更管理粗放,设计造成的过期库存多;质量差,次品多,劣质库存就多,而且得多备库存来应对质量问题;质量差,回款周期就长,应收账款就多----应收账款和应付账款也是库存,不过是以另一种方式出现;生产周期长,周转库存自然就高;运输慢,在途库存就高;预测、计划不到位,要么造成短缺,要么造成过剩,都是库存问题。
在预测时间序列上,指数平滑法是另一类常用的方法。该方法最先由布朗提出,他认为时间序列的态势具有稳定性或规则性,所以可被合理地顺势推延;最近发生的,在某种程度上会持续到最近的未来,所以历史信息越新,其所占权重也越大[1]。指数平滑法其实是一种特殊的移动平均法,是一种加权移动平均,特点是权重按照几何数级递减,越老的数据权重越小。
强势职能,比如销售和研发的不作为,人们容易看到,也经常口诛笔伐;但是弱势职能,比如计划和供应链的不作为,却因为被其"受害者"的角色所掩护,往往不容易发现,也就更不容易纠正。
十几年前,我在北美读商学院,一位教授说,(以前在美国),如果一个人做不了设计、干不了销售,也做不来财务、人事、生产、仓储、物流,那就让他做采购;如果连钱都不会花,那就实在抱歉了,只有卷铺盖走人。这是美国几十年前的情况,随着全球采购和外包战略的盛行,采购的地位大幅提升,不再如此。但在一些粗放经营的本土企业,采购的地位还很低,是典型的"小采购"。我一直以为采购是一个人在这些公司的最后一站,直到2015年初。
在计算安全库存的时候,当需求相对平稳的时候,我们一般用过去一段时间的平均需求当做预测,计算这段需求历史的标准差,来量化需求的不确定性。这里有两个问题要考虑:其一,样本的数量,即用多少个数据点来计算;其二,数据汇总的颗粒度,比如按日,还是按周或按月汇总。
最近评论