March 2024 归档

以前我们谈到,一线销售做预测,颗粒度太小,准确度不高;责任考核机制缺失(没见过哪个销售丢了工作,是因为预测准确度低),而没有考核机制的事情是做不好的。既然如此,为什么那么多的企业都在由一线销售做预测?

为什么没有"山寨飞机"?

| 暂无评论

一款手机面世,过不了几天就有一堆的山寨版;但波音飞机都飞了几十年了,怎么就不见给谁山寨了呢?这不是因为飞机的利润不高,也不是因为飞机的技术难度高----那些飞机上用的都是几十年前的老技术;而是因为飞机太复杂,比如波音747有600多万个零件,后面的供应链异常复杂:你可以"山寨"出一个简单的产品,但很难"山寨"出一个复杂的供应链来。

有人问通用汽车的前采购副总裁安德森,你们(采购)的挑战是什么?安德森说,"(通用汽车的)采购有三个挑战:复杂度、复杂度、还是复杂度。通用汽车在全球采购的零部件达16万种,这也意味着每天出问题的机会有16万个。而要生产线就停顿下来,缺一种零件就够了"。

一线销售,能做好预测吗?

| 暂无评论

在很多企业,一线销售提需求是个普遍的现象。理由看上去也很充分:他们最接近客户,最可能知道客户要什么。其实,除非是客户定制化的需求,一线销售在做需求预测上挑战多多。

案例企业有着强大的粉丝团体,一直走的是粉丝经济,虽然在向品牌经济过渡,但粉丝经济还是营收的重要构成。为了最大化粉丝收益,案例企业就不断推出新品,基本上是每周都有新品上市。该企业走的是中高端、差异化路线,快时尚,品种多,批量小,首批推出一般也就几百到几千件。多种少量让预测更难做,要么过剩,要么短缺,在案例企业得到充分体现。

好坏SKU:高乐氏控制产品复杂度

| 暂无评论

消除信息不对称,应对牛鞭效应

| 暂无评论

牛鞭效应是指需求变动沿着供应链传递时会层层放大,造成各种短缺和过剩问题,长期以来一直是学术界和工业界的研究重点。根据斯坦福大学李效良教授(Hau Lee)及其同事的研究,牛鞭效应有四大主要成因,背后都能看到信息不对称的影子,让我们一一介绍如下。

我自己的核心竞争力

| 暂无评论

我是个作者。不过在专业领域,一个人很难靠纯写作谋生,所以我也做点培训、咨询。那我的核心竞争力究竟是什么呢?是我二十多年来在供应链领域的实践、研究和总结。之所以这是我的核心竞争力,是因为它符合核心竞争力的三个条件。

牛鞭效应下,短缺与过剩交替

| 暂无评论

ZARA与"自来水模式"的预测机制

| 暂无评论

我经常问职业人,有谁预测过自家的用水量?大家都说没有:做预测的是水务局,他们预测整个城市的用水量,确保水厂有足够的水,大家用时打开水龙头就行了。大家也从没见过水务局深入到千家万户,让每家每户"提需求",谁预测谁有水,谁不预测就没水。那我们为什么有那么多的公司,一而再地要求一线销售、直接用户提需求(做预测)呢?

复杂度不能光怪客户

| 暂无评论

如果你问销售、设计,为什么又整出一个新产品时,他们的答复当然是因为有客户需求。也就是说,复杂度是外界因素造成的。那同样的客户群,同样的需求,为什么有些公司就是比另一些公司的产品更简单?就拿手机来说,苹果和三星的目标用户都是一帮有钱人,这些人的需求都差不多,苹果每年推出一款两款三款四款,而三星则整出几十款,多得连他们自己大概都弄不清。

新品计划的准确度低,关键是伴随着更多的需求历史,要及时滚动更新,同时平衡库存风险断货风险运营成本

信息化:闭环交付体系的"高速公路"

| 暂无评论

计划中的"经验主义"与"教条主义"

| 暂无评论

在《读者》上看到王蒙的一句话,很有感触:"凡人容易滑向经验主义,圣人容易走向教条主义"。经验主义是感性的,局部的;教条是理性的,有一定的普适性。圣人之所以是圣人,是因为他们经多识广,"数据"充分,总结提炼出了规律性的东西。《读者》上还有一篇文章,说普通人的盲区是"过于依赖自己的直觉",专家的盲区则是"过于相信自己的理性和经验"(《到底谁不靠谱》,作者人神共奋,《读者》2019年第4期),跟王蒙之言有异曲同工之妙。

2015年,普华永道在北美的一位总监问我,供应链管理在中国发展得怎么样?我给他简短地回复了Email,说发展得很好,同时讲了自己的三个小故事来概括:十几年前,我在申请北美商学院时,第一次听说供应链管理;七八年前,国内的一些大型企业启动供应链转型,成为我在国内的第一批客户;最近几年,越来越多的中小企业成为我的客户,从供应链的角度解决日益严峻的成本和库存问题。

设计优化中,供应链扮演关键角色

| 暂无评论

计划由人做,人是有偏见的

| 暂无评论

计划由人做,人是有缺陷的,表现为各种偏见。不管是获取信息、处理信息,还是在输出信息、反馈判断结果的时候,人们都可能有意无意地掺入自己的偏见。这是人的天性,作为管理者,我们得正视并寻求解决方案。这里我们主要想讲三种偏见,以及如何应对。

价格由市场决定,成本由复杂度决定

| 暂无评论

假定一个公司只生产一种水杯、一种型号、一种颜色,那意味着只有一个预测, 一个生产、采购和销售计划,这时候水杯的单位成本为1元。现在为了多样化,公司决定生产四种水杯、六种型号、八种颜色,那意味着有192个预测(4*6*8=192),192个库存、生产和采购计划。水杯的单位成本还会是1元吗?如果再加上20个销售点的话呢?

时间序列的预测:指数平滑法

| 暂无评论

在预测时间序列上,指数平滑法是另一类常用的方法。该方法最先由布朗提出,他认为时间序列的态势具有稳定性或规则性,所以可被合理地顺势推延;最近发生的,在某种程度上会持续到最近的未来,所以历史信息越新,其所占权重也越大[1]。指数平滑法其实是一种特殊的移动平均法,是一种加权移动平均,特点是权重按照几何数级递减,越老的数据权重越小。

硅谷有个高科技企业,设计工程师们时时处于项目进度的压力下,经常抱怨供应链速度太慢。就拿最简单的订单处理来说,随便买点什么,花钱也不多,供应商也是已知的 ,价格也早谈定了,采购不花个三天五天,这采购订单就是发不出去。

我接触过几个软件公司,都是开发计划软件的。他们有的基于数理统计,提供多种预测模型以供择优选用;有的基于人工智能,通过机器学习,为需求预测和库存计划提供独特的解决方案。这些软件都远非完美,不过整体而言,要比一帮计划员拍脑袋、各行其是强。但是,很多企业就是不愿采用,或者即便实施了计划软件,实际工作中还是在Excel中手工做计划。

产品复杂度事关企业的战略选择

| 暂无评论

从根本上看,产品的复杂度取决于企业的战略选择:是求大求全,还是走精品路线?是所有的格子都填,还是专填大格子?这里的典型是三星和苹果。苹果每年推出两款、三款、四款手机,而三星则有几十款,多到估计连他们自己也数不清(如图1)。

需求评审:为何提不高预测准确度

| 暂无评论

有个企业的需求计划由各大区提交,在总部汇总,预测准确度历来不高,造成供应链的很多库存问题。供应链部门就建立了需求评审制度,让总部的营销、市场、财务和供应链等部门评审需求预测。但大区的销售们不满意,认为评审增加了一环,阻隔了销售与生产的有效对接。案例企业就问我,需求评审流程该如何设置。

延迟、大规模定制和模块化

| 暂无评论

经济全球化,几乎每个行业的需求都是越来越多元化、碎片化,而供应还是大批量生产,导致需求与供应出现结构性的失调。业界一般通过三方面的措施来应对,各有优劣和挑战:(1)导入精益制造,减小对批量的依赖;(2)标准化,增加规模效益;(3)模块化和延迟战略,实现大规模定制。

畅销专著

  • Supply chain management: high cost, high inventory, heavy asset solutions

畅销经典

  • Purchasing and Supply Chain Management

关于此归档

这里是March 2024的所有日记,它们按照时间从新到老排序。

上一篇日记February 2024

下一篇日记April 2024

首页归档页可以看到最新的日记和所有日记。